US009087211B2

a2z United States Patent (10) Patent No.: US 9,087,211 B2
Eisinger et al. 45) Date of Patent: Jul. 21, 2015
(54) METHOD AND SYSTEM FOR ANNOTATION 7,320,008 Bl 1/2008 Colgrove
BASED SECURE CACHING 7,607,126 B2 10/2009 Read
7,702,800 B2 4/2010 Copeland et al.
(75) Inventors: Jacob D. Eisinger, Austin, TX (US); Sri 7,707,564 B2 4/2010 Marvin et al.
Ramanathan, Lutz, FL (US); William 2002/0116474 Al X 8/2002 Copeland et al.
A. Reichert, ITI, Arlington, VA (US); Sobyoneaes AT A200e Kahn elal o 713/167
Matthew B. Trevathan, Kennesaw, GA 2005/0262499 Al 11/2005 Rar(\i]m etal.
ca
Us) 2007/0079117 Al* 4/2007 Bhogaletal. 713/160
(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION, OTHER PUBLICATIONS
Ammonk, NY (US) Banditwattanawong, T.; Maruyama, K.; Hidaka, S.; Washizaki, H.,
(*) Notice: Subject to any disclaimer, the term of this “I.’roxy-and-h(.)ok: a Java-based (flstrlbuted object caching,” Ir%dus-
patent is extended or adjusted under 35 trial Informatics, 2005. INDIN ’05. 2005 3rd IEEE Int:rnatlonal
U.S.C. 154(b) by 747 days. Conference on , vol., No. pp. 819-824, Aug. 10-12, 2005.
(Continued)
(21) Appl. No.: 12/272,081
(22) Filed: Nov. 17, 2008 Primary Examiner — Syed Zaidi
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Matthew Chung; Roberts
Milotkowski Safran & Cole, P.C.
US 2010/0125602 A1 May 20, 2010 otowsidl Satrall & Loe,
(31) Int.Cl (57) ABSTRACT
GO6F 21/00 (2013.01)
GOGF 21/62 (2013.01) A method implemented in a computer infrastructure having
GOOF 12/08 (2006.01) computer executable code having programming instructions
(52) US.CL tangibly embodied on a computer readable storage medium.
CPC ... GO6F 21/6227 (2013.01); GO6F 12/0875 The programming instructions are operable to receive an
. . . (2013.01) object from an application server and detect that an object
(58) Field of Classification Search encryption is activated for the object. Additionally, the pro-
CPC . GOGF 21/6227; GOGF 21/10; GOGF 21/6218; gramming instructions are operable to inspect an annotation
USPC 713/167 160G10869F' ;éi) (EZ(S) for the object and determine that the object or one or more
g lt """ ﬁlf """ et ’ I;h' t, attributes of the object require encryption based on the
ce application liie for complete search fustory. inspecting. Furthermore, the programming instructions are
(56) References Cited operable to encrypt Fhe object or the one or more attribut.es. of
the object that require encryption based on the determining
U.S. PATENT DOCUMENTS using an encryption type and serialize and cache the object in
a cache storage.
6,598,057 Bl 7/2003 Synnestvedt et al.
6,976,090 B2 12/2005 Ben-Shaul et al.
7,082,572 B2 7/2006 Pea et al. . .
7,151,832 BL* 12/2006 Fetkovichetal. 380/210 22 Claims, 6 Drawing Sheets

40 #

Appioation Server Apploston ssrver sends.
e oached engine

/ 400

Application Server 315

415

e cbject

430~—_|

Cacting angne seralizss
‘and cachesthe otiact

Caching Engine 30

/440

Cactingengine sertase
-drgi\:;!ﬂuﬂ

US 9,087,211 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Giereth, Mark, “On Partial Encryption of RDF-Graphs,” Lecture
Notes in Computer Science, 2005, vol. No. 3729, pp. 308-322.*
Kim et al., “Energy-efficient Java execution using local memory and
object co-location”, IEE Proc.-Comput. Digit. Tech., vol. 151, No. 1,
Jan. 2004, pp. 33-42.

Suh et al., “Secure Program Execution via Dynamic Information
Flow Tracking”, ASPLOS 04, Oct. 9-13, 2004, pp. 85-96.

Joshi et al., “Detecting Past and Present Intrusions through Vulner-
ability-Specific Predicates”, SOSP *05, Oct. 23-26, 2005, pp. 91-104.
Aldrich et al., “Alias Annotations for Program Understanding”,
OOPLSA °02, Nov. 4-8, 2002, pp. 311-330.

* cited by examiner

US 9,087,211 B2

Sheet 1 of 6

Jul. 21, 2015

U.S. Patent

T 9221aq bunndwon

ace
wiaysAg abeuols T4
0IA8p O/
INOYH AV
BN
- —
— 174
7% [oep=U] O]
0< auibug Buiyoen |onuoH
weibold
— Y
Yée —
Aowapy o¢
10SS200.d
S/O

US 9,087,211 B2

Sheet 2 of 6

Jul. 21, 2015

U.S. Patent

0ee

¢d0SPP JIACG TP BLBELTZE

enjeA YseH payoen
ayoen

A

OLc \

¢ 9Old
gce 0ce 174
/ /
Z30SYY 2JIESPY BEBCEITE | uolouny yseH alumolq
onjeA yseH Induy|
auibug Buyoe)
W
00¢

US 9,087,211 B2

Sheet 3 of 6

Jul. 21, 2015

U.S. Patent

uondAiveq vsy

UoHeslady

A

A 4

<660406)cCeREQ)

/

Z660406J5258E0)

\

ove

2660406127801

ayoen

s109[qO payoe)

A

A

Aoy onand | v

uondAveq vsy

oLe

Uoneoady

GlLE

€ Old
Ges oce Gze 0ce
, / , /
Aoy ajeaud
660406i5250501 || UONHOUNH « alumoliq
uondAiouz vy '
anjeA vsy ndu
3uIbug BUIyOB)
(0158

/ 0oe

US 9,087,211 B2

Sheet 4 of 6

Jul. 21, 2015

U.S. Patent

7
polyo sypsayoeo pue Y pajejoUUE 242 Uy}
sazass awbua Bupprsy [\ sanguIy spifoug sufiug

paiqo ay}saiped pur
saz|eias aufus BupeD

ovv\

¥ 'Old

paldo sy} sayoes pus
$ez||edes suPUs Bupen

1% 4

palgo ayj uo uolecuus

auy}syoayn auibu] Bupen

va\

240 paung
uojpikLou
pafio s

pafio ayy
sant0a4 auifius Buiype)

0oy

SPUSS Jasies uoieddy

\ =
o€ suibuz buiyoed Gly
G1¢ Jomsg uones)ddy
o 2LoED 3
AUy MMONM&DQ 8ul AH o_wuwmcuﬂ.“ﬂ_owuﬂ_s_mﬁv

i8alas uoiealdichy

o /mov

US 9,087,211 B2

Sheet 5 of 6

Jul. 21, 2015

U.S. Patent

0es 0cs
Geg \ GLg
paleiouus 7
pafoo sangupE Palgo ay1 4oy uoBoULE
paLIEa SLIREL SUBUT sainguye f palgo whoag aJe aU} o ausxay aubus Bupe
Ao aLy
ON
Eanhal
SEAE0a. Janlas Buoen
(A4 ~ 108lq0 = e
o subuy peyoeo suinel suibugy oLS
Buiyoes
Sl
Janeg uoneolddy
aLED WY LD Wog
paltjo sanigoal uoleoldy palgo seaisa. uolsoldy
\ aLIeD Wod

ova

Ges

p

00G

pafio sanbai uoipeoddy

09

US 9,087,211 B2

Sheet 6 of 6

Jul. 21, 2015

U.S. Patent

o9

0¢ suibug Buiyoen

\

9 Old

Geo

o\mm \m 19
palio % paiao ay} Joj UoRjoUUE
payoeo suinted auBug sy sypaLp aubus Burne)
Eanba)

09

SEAIE0a4 Janiss Buie)

J\;;V

GlLc 19MBS
uoneolddy

\

\

LRaygeu
uondA.oug auoed Wou
Azyayand ups Wioeg sad paseq paftio sanEoa. uolpeoldoy
A2 8
auoduwo? uondiaag /O /
/°N
s €9 g9
iajsanhal 0] palto Lney Jagsanbal 0] palko wnlay
059 g¥9 \.

009

el o4
pafoo Eanbas uoeoldcy

G09

US 9,087,211 B2

1
METHOD AND SYSTEM FOR ANNOTATION
BASED SECURE CACHING

FIELD OF THE INVENTION

The present invention generally relates to caching, and
more particularly, to a method and system for annotation
based secure caching.

BACKGROUND

A cache is a collection of data duplicating original values
stored elsewhere or computed earlier, where the original data
may be expensive to fetch (owing to longer access time) or to
compute, compared to the cost of reading the cache. In other
words, a cache is a temporary storage area where frequently
accessed data can be stored for rapid access. Once the data is
stored in the cache, future use can be made by accessing the
cached copy rather than re-fetching or recomputing the origi-
nal data, so that the average access time is shorter. A cache,
therefore, helps expedite data access that a central processing
unit (CPU) would otherwise need to fetch from main
memory. Additionally, as is understood by one skilled in the
art, a cache may refer to the block of memory for temporary
storage of cached data likely to be used again.

A CPU and hard drive, for example, frequently use a cache,
as do web browsers and web servers. More specifically, a
cache is made up of a pool of entries. Each entry has a datum
(anugget of data) which is a copy of the datum in some data
storage. Each entry also has a tag, which specifies the identity
of'the datum in the backing store of which the entry is a copy.

When a cache client (e.g., a CPU, web browser, or operat-
ing system, amongst other cache clients) wishes to access a
datum presumably in the backing store, it first checks the
cache. If an entry can be found with a tag matching that of the
desired datum, the datum in the entry is used instead. This
situation is known as a cache hit. So, for example, a web
browser program might check its local cache on disk to see if
it has a local copy of the contents of a web page at a particular
URL. In this example, the URL is the tag, and the content of
the web page is the datum.

Often, data stored in a cache may be encrypted. In cryp-
tography, encryption is the process of transforming informa-
tion (referred to as plaintext) using an algorithm (called
cipher) to make it unreadable to anyone except those possess-
ing special knowledge, usually referred to as a key. The result
of the process is encrypted information (in cryptography,
referred to as ciphertext). In many contexts, the word encryp-
tion also implicitly refers to the reverse process, decryption
(e.g., “software for encryption” can typically also perform
decryption), to make the encrypted information readable
again (i.e., to make it unencrypted).

Encryption is used in protecting information within many
kinds of systems, such as computers, networks (e.g. the Inter-
net e-commerce), mobile telephones, wireless microphones,
wireless intercom systems, Bluetooth devices and bank auto-
matic teller machines. Encryption is also used in digital rights
management to prevent unauthorized use or reproduction of
copyrighted material and in software also to protect against
reverse engineering (see also copy protection).

Object-oriented programming (OOP) is a programming
paradigm that uses “objects™ and their interactions to design
applications and computer programs. Programming tech-
niques may include, for example, features such as encapsu-
lation, modularity, polymorphism, and inheritance. Many
modern programming languages now support OOP.

10

15

20

25

30

35

40

45

50

55

60

65

2

Object-oriented programming may be seen as a collection
of cooperating objects, as opposed to a traditional view in
which a program may be seen as a group of tasks to compute
(“subroutines”). In OOP, each object is capable of receiving
messages, processing data, and sending messages to other
objects. Moreover, each object may comprise a number of
attributes.

Each object can be viewed as an independent machine with
a distinct role or responsibility. The actions or “operators™ on
the objects are closely associated with the object. For
example, in OOP, the data structures tend to carry their own
operators around with them (or at least “inherit” them from a
similar object or “class”).

An annotation, in the Java® computer programming lan-
guage, is a special form of syntactic metadata that can be
added to Java source code. (Java and all Java-based trade-
marks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.) For example,
attributes, classes, methods, variables, parameters and pack-
ages may be annotated. Java annotations are reflective in that
they are embedded in class files generated by the compiler
and may be retained by the Java virtual machine to be made
retrievable at run-time. Moreover, annotations themselves are
annotated to indicate where and when they can be used.

WebSphere® dynacache, Memcache, tangasol and other
caches often store data unencrypted in memory or encrypt an
entire object. (WebSphere is a registered trademark of Inter-
national Business Machines Corporation in the United States,
other countries, or both.) That is, with these approaches, an
object may be unencrypted or entirely encrypted (including
all of the attributes of the object). Moreover, if an object is
entirely encrypted, with current approaches, the entire object
is encrypted using the same type of encryption (e.g., hash or
RSA). (As should be understood by one skilled in theart RSA
is not an acronym per se. Rather, the three letters are the first
letters of the last names of the developers of RSA (i.e., Rivest,
Shamir and Adleman).) However, these methods do not give
control to the developer to determine what can be cached, and
what types of encryption can be used on a piece of data. That
is, these methods do not allow a developer to encrypt only
particular attributes of an object. Moreover, these approaches
do not allow a developer to assign different types of encryp-
tion to different attributes of the same object.

Accordingly, there exists a need in the art to overcome the
deficiencies and limitations described hereinabove.

SUMMARY

In a first aspect of the invention, a method is implemented
in a computer infrastructure having computer executable
code tangibly embodied on a computer readable storage
medium having programming instructions. The program-
ming instructions are operable to receive an object from an
application server and detect whether object encryption is
activated for the object. Additionally, the programming
instructions are operable to inspect an annotation for the
object when the object encryption is activated for the object
and determine whether the object or one or more attributes of
the object require encryption based on the inspecting. Fur-
thermore, the programming instructions are operable to
encrypt the object or the one or more attributes of the object
that require encryption based on the determining using an
encryption type and serialize and cache the object in a cache
storage.

In another aspect of the invention, a system comprises a
caching engine operable to receive an object from an appli-
cation server and detect whether object encryption is acti-

US 9,087,211 B2

3

vated for the object. Further, the caching engine is operable to
inspect an annotation for the object when the object encryp-
tion is activated for the object and determine whether the
object or one or more attributes of the object require encryp-
tion based on the inspecting. Additionally, the caching engine
is operable to encrypt the object or the one or more attributes
of'the object that require encryption based on the determining
using an encryption type and serialize and cache the object in
a cache storage.

In an additional aspect of the invention, a computer pro-
gram product comprising a computer usable storage medium
having readable program code embodied in the medium is
provided. The computer program product includes at least
one component operable to receive an object from an appli-
cation server and detect whether object encryption is acti-
vated for the object. Additionally, the at least one component
is operable to inspect an annotation for the object when the
object encryption is activated for the object and determine
whether the object or one or more attributes of the object
require encryption based on the inspecting. Further, the at
least one component is operable to encrypt the object or the
one or more attributes of the object that require encryption
based on the determining using an encryption type and seri-
alize and cache the object. Additionally, the annotation is a
runtime annotation and the annotation indicates one or more
encryption types supported for the object or the one or more
attributes of the object.

In a further aspect of the invention, a method comprises
providing a computer infrastructure operable to receive an
object from an application server and detect whether object
encryption is activated for the object. Additionally, the com-
puter infrastructure is operable to inspect an annotation for
the object when the object encryption is activated for the
object and determine whether the object or one or more
attributes of the object require encryption based on the
inspecting. Further, the computer infrastructure is operable to
encrypt the object or the one or more attributes of the object
that require encryption based on the determining using an
encryption type and serialize and cache the object. Further,
when determining that the object encryption is not activated
for the object based on the detecting, the serializing and
caching the object is performed without encryption of the
object, and when determining that at least one of the object
and all of the one or more attributes of the object do not
require encryption based on the inspecting, the serializing and
caching the object is performed without encryption of the
object.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The present invention is described in the detailed descrip-
tion which follows, in reference to the noted plurality of
drawings by way of non-limiting examples of exemplary
embodiments of the present invention.

FIG. 1 shows an illustrative environment for implementing
the steps in accordance with the invention;

FIG. 2 shows an exemplary cryptographic hash cache pro-
cess in accordance with aspects of the invention;

FIG. 3 shows an exemplary cryptographic RSA cache pro-
cess in accordance with aspects of the invention;

FIG. 4 shows an exemplary process flow for caching in
accordance with aspects of the invention;

FIG. 5 shows an exemplary process flow for a hash cache
retrieval in accordance with aspects of the invention; and

10

20

30

35

40

45

50

65

4

FIG. 6 shows an exemplary process flow for an RSA/key-
based cache retrieval in accordance with aspects of the inven-
tion.

DETAILED DESCRIPTION

The present invention generally relates to caching, and
more particularly, to a method and system for annotation
based secure caching. More specifically, the present invention
provides a method and system for a caching engine to encrypt
specific attributes of an object on the fly (e.g., in real time) by
inspecting annotations associated with the attribute. The
present invention abstracts the encryption away from the
application and allows developers to set caching level via the
annotations that describe how to encrypt an attribute of an
object.

Implementing the present invention gives control to, e.g., a
developer to determine what data (e.g., objects or particular
attributes of an object) is to be cached, and what types of
encryption are used to encrypt the data (e.g., each of the
objects and/or particular attributes of each of the objects). For
example, the present invention allows for objects and/or par-
ticular attributes of an object to be cached unencrypted,
hashed or strongly encrypted (e.g., using RSA encryption) on
the fly by determining the annotation of each attribute.

Furthermore, implementing the present invention allows
the caching engine to switch caching mechanisms for a par-
ticular object (or particular attributes of an object) on the fly.
For example, if a cache needs to be debugged, utilizing the
present invention, the security level of the cache can be
changed on the fly (e.g., in real time) while the system is
running and the newly cached contents can be switched to,
e.g., clear text. If there are efficiency problems with an
encryption mechanism for a particular attribute of an object,
for example, using the present invention, the encrypting
mechanism can be changed to any encrypting mechanism
supported in the annotation. Additionally, if encryption is not
available and the attribute does not have “nocrypt” as an
option the attribute will not be cached. This helps to ensure
that an attribute remains secure.

Moreover, by implementing the present invention using the
annotations to set caching levels allows multiple servers to
share the same cache in a secure fashion. For example, by
allowing the caching engine to encrypt the data with a private
key, the present invention allows servers to retrieve cached
data and decrypt annotated data if they did not place it in the
system if they have the public key.

System Environment

As will be appreciated by one skilled in the art, the present
invention may be embodied as a system, method or computer
program product. Accordingly, the present invention may
take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, the
present invention may take the form of a computer program
product embodied in any tangible medium of expression hav-
ing computer-usable program code embodied in the medium.

Any combination of one or more computer usable or com-
puter readable medium(s) may be utilized. The computer-
usable or computer-readable medium may be, for example
but not limited to, an electronic, magnetic, optical, electro-
magnetic, infrared, or semiconductor system, apparatus,

US 9,087,211 B2

5

device, or propagation medium. More specific examples (a
non-exhaustive list) of the computer-readable medium would
include the following:

an electrical connection having one or more wires,

a portable computer diskette,

a hard disk,

arandom access memory (RAM),

a read-only memory (ROM),

an erasable programmable read-only memory (EPROM or

Flash memory),

an optical fiber,

a portable compact disc read-only memory (CDROM),

an optical storage device,

atransmission media such as those supporting the Internet

or an intranet, or a magnetic storage device.

The computer-usable or computer-readable medium could
even be paper or another suitable medium upon which the
program is printed, as the program can be electronically cap-
tured, via, for instance, optical scanning of the paper or other
medium, then compiled, interpreted, or otherwise processed
in a suitable manner, if necessary, and then stored in a com-
puter memory.

In the context of this document, a computer-usable or com-
puter-readable medium may be any medium that can contain,
store, communicate, propagate, or transport the program for
use by or in connection with the instruction execution system,
apparatus, or device. The computer-usable medium may
include a propagated data signal with the computer-usable
program code embodied therewith, either in baseband or as
part of a carrier wave. The computer usable program code
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc.

Computer program code for carrying out operations of the
present invention may be written in any combination of one or
more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on
the user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network. This may include, for example, a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

FIG. 1 shows an illustrative environment 10 for managing
the processes in accordance with the invention. To this extent,
the environment 10 includes a server or other computing
system 12 that can perform the processes described herein. In
particular, the server 12 includes a computing device 14. The
computing device 14 can be resident on a network infrastruc-
ture or computing device of a third party service provider (any
of which is generally represented in FIG. 1).

The computing device 14 includes a caching engine 30.
The caching engine 30 is operable to receive objects from an
application for caching, check annotations of the object to
determine whether encryption is required for the object (or
any attributes of the object), encrypt those objects (or
attributes of the object) that require encryption, serialize and
cache the object, receive requests from an application for
objects from a cache, decrypt the object (or attributes of the
object) as directed by the annotations, and send the object to
the application server, e.g., the processes described herein.

10

15

20

25

30

40

45

50

55

60

65

6

The caching engine 30 can be implemented as one or more
program code in the program control 44 stored in memory
22A as separate or combined modules.

The computing device 14 also includes a processor 20,
memory 22A, an I/O interface 24, and a bus 26. The memory
22A can include local memory employed during actual
execution of program code, bulk storage, and cache memories
which provide temporary storage of at least some program
code in order to reduce the number of times code must be
retrieved from bulk storage during execution. In addition, the
computing device includes random access memory (RAM), a
read-only memory (ROM), and an operating system (O/S).

The computing device 14 is in communication with the
external 1/O device/resource 28 and the storage system 22B.
For example, the I/O device 28 can comprise any device that
enables an individual to interact with the computing device 14
or any device that enables the computing device 14 to com-
municate with one or more other computing devices using
any type of communications link. The external I/O device/
resource 28 may be for example, a handheld device, PDA,
handset, keyboard, etc.

In general, the processor 20 executes the computer pro-
gram code (e.g., program control 44), which can be stored in
the memory 22A and/or storage system 22B. Moreover, in
accordance with aspects of the invention, the program control
44 having program code controls the caching engine 30.
While executing the computer program code, the processor
20 can read and/or write data to/from memory 22A, storage
system 22B, and/or I/O interface 24. The bus 26 provides a
communications link between each of the components in the
computing device 14.

The computing device 14 can comprise any general pur-
pose computing article of manufacture capable of executing
computer program code installed thereon (e.g., a personal
computer, server, etc.). However, it is understood that the
computing device 14 is only representative of various pos-
sible equivalent-computing devices that may perform the pro-
cesses described herein. To this extent, in embodiments, the
functionality provided by the computing device 14 can be
implemented by a computing article of manufacture that
includes any combination of general and/or specific purpose
hardware and/or computer program code. In each embodi-
ment, the program code and hardware can be created using
standard programming and engineering techniques, respec-
tively.

Similarly, the computing infrastructure (or server) 12 is
only illustrative of various types of computer infrastructures
for implementing the invention. For example, in embodi-
ments, the server 12 comprises two or more computing
devices (e.g., a server cluster) that communicate over any
type of communications link, such as a network, a shared
memory, or the like, to perform the process described herein.
Further, while performing the processes described herein, one
ormore computing devices on the server 12 can communicate
with one or more other computing devices external to the
server 12 (e.g., an application server, described further below,
which may request objects from the caching engine 30 of the
server 12 and, in embodiments, may decrypt objects using a
decryption component) using any type of communications
link. The communications link can comprise any combina-
tion of wired and/or wireless links; any combination of one or
more types of networks (e.g., the Internet, a wide area net-
work, a local area network, a virtual private network, etc.);
and/or utilize any combination of transmission techniques
and protocols.

In embodiments, the invention provides a business method
that performs the steps of the invention on a subscription,

US 9,087,211 B2

7

advertising, and/or fee basis. That is, a service provider, such
as a Solution Integrator, could offer to perform the processes
described herein. In this case, the service provider can create,
maintain, deploy, support, etc., the computer infrastructure
that performs the process steps of the invention for one or
more customers. These customers may be, for example, any
business that uses technology. In return, the service provider
can receive payment from the customer(s) under a subscrip-
tion and/or fee agreement and/or the service provider can
receive payment from the sale of advertising content to one or
more third parties.

Cryptographic Hash Cache

FIG. 2 shows an exemplary cryptographic hash cache pro-
cess 200 in accordance with aspects of the invention. The
caching engine 30 takes an input object 215 (e.g., the term
“brownie”) and, via a hash function 220, returns a fixed sized
string called a hash value 225 (e.g., “32E33a3a 4453Efc
4450F2”). The cryptographic hash caching engine 30 places
the hash value 225 in the cache 210 instead of the actual input
object 215 to create a cached hash value 230. In embodi-
ments, the cache 210 may be stored in the storage system 22B
of FIG. 1.

This cryptographic hash technique may be useful, for
example, when the value being cached is not being displayed,
but rather, is being compared against for verification. The
hash function 220 creates a “digital fingerprint” of the data
being verified. Thus, instead of performing a comparison of
the input object 215 (e.g., the term “brownie”), which may be,
for example, sensitive or privileged information, a compari-
son can be made with the hash value 225, which is the “digital
fingerprint” of the data being verified.

For example, a credit card number may be cached, for
example, in memory or on a storage disk. Normally, this
cache may be unencrypted, thus making it easy for a hacker to
poke through the memory of the computer or check the disk
offload for a clear text credit card. However, since the system
may only be veritying the credit card data that is in cache and
comparing to what the user entered, it is more secure to apply
a hashing function to the user input and compare the hash
value of the user’s input to the hash stored in cache. That is, if
the cache 210 is compromised, the cached hash values 230 are
useless to the hacker without the hash function 220.

Two suitable algorithms for hashing include, for example,
MDS (Message-Digest algorithm 5) and SHA-1 (Secure
Hash Algorithm-1), amongst other hashing algorithms. In
cryptography, MDS5 is a widely used cryptographic hash func-
tion with a 128-bit hash value. As an Internet standard, MD35
has been employed in a wide variety of security applications,
and is also commonly used to check the integrity of files. An
MDS hash may typically be expressed as a thirty two digit
hexadecimal number. Additionally, the SHA hash functions
are a set of cryptographic hash functions. In particular,
SHA-1 produces a message digest that is one hundred sixty
bits long. Other SHAs (e.g., SHA-2, SHA-3, etc.) produce
message digests of different lengths of bits.

Cryptographic RSA Cache

FIG. 3 shows an exemplary cryptographic RSA cache pro-
cess 300 in accordance with aspects of the invention. In
cryptography, RSA is an algorithm for public-key cryptogra-
phy. RSA is widely used in electronic commerce protocols.

Public-key cryptography, also known as asymmetric cryp-
tography, is a form of cryptography in which the key used to
encrypt a message differs from the key used to decrypt the

10

15

20

25

30

35

40

45

50

55

60

65

8

message. In public key cryptography, a user has a pair of
cryptographic keys: a public key and a private key. The private
key is kept secret, while the public key may be widely dis-
tributed. Incoming messages would have been encrypted with
the recipient’s public key and can only be decrypted with his
corresponding private key. The keys are related mathemati-
cally, but the private key cannot be practically derived from
the public key.

With RSA caching, the caching engine 30 is operable to
receive an input object 320 (e.g., the term “brownie”) and
using an RSA encryption function 325 with a private key 330,
create an encrypted RSA value 335 (eg.,
“1038525190ff0992”"). Additionally, the caching engine 30 is
operable to place the RSA value 335 in a cache 310 as a
cached object 340. If the cache 310 needs to be replicated to
another cache (not shown), the other cache has the ability to
read the cache 310 and decrypt one or more of the cached
objects 340 using a public key 350. In embodiments, the
cache 310 may be stored in the storage system 22B of FIG. 1.

Also, as shown in FIG. 3, each application 315, e.g., server,
that subscribes to the cache 310 may decrypt one or more of
the cached objects 340 using an RSA decryption 345 with a
publickey 350. Inaddition, in embodiments, each application
315, e.g., server, may have a different public/private key
relationship with the cache 310. This allows multiple appli-
cations 315, e.g., servers, to place data in the cache 310 while
maintaining the security of the application. For example, one
application, by virtue of its public/private key relationship
with the cache 310, may be able to access only particular
cached objects (e.g., some subset of cached objects 340) from
the cache 310, and another application, by virtue of its public/
private key relationship with the cache 310, may be able to
access only particular cached objects (e.g., some different
subset of cached objects 340) from the cache 310. Moreover,
if an application 315, e.g., server, is cloned, the cloned server
needs the public key 350 to access the data in the cache 310
allowing both clones to place data in the cache 310 and access
that data.

Annotation Based Control of Caching

In accordance with aspects of the invention, Java runtime
annotations may be used to turn on, e.g., hash caching, RSA
caching, or other caching mechanisms for an object or par-
ticular attributes of an object. As should be understood by one
skilled in the art, a runtime annotation is an annotation that
can be inspected during runtime.

For example, a Java annotation may include the following
code: import java.lang.annotation.*;

@Retention(RetentionPolicy. RUNTIME)
@interface CacheType {String[] value();}

With this above exemplary annotation, a runtime annotation
has been created that contains a string array of value.

Additionally, for an exemplary class of credit card, the Java
annotation may include the following code:

@CacheType(“None™)

public class CreditCard
@CacheType(“Hash“,"RSA”)

Integer ccnum;

public void setCardNumber(Int ccnum)
Public boolean getCardNumber(Int ccnum)

US 9,087,211 B2

9

In accordance with aspects of the invention, the “@cache-
Type” is used to instruct the caching engine 30 and cache as to
what type of encryption is supported. Thus, in the example
above, the ccnum (which represents the credit card number)
can support hash and RSA caching. More specifically, with
the above example, the annotation “@CacheType(“None™)
public class CreditCard” indicates to the caching engine 30
that the class of credit card (i.e., the object) is not encrypted as
a whole. However, as indicated by the annotation “@Cache-
Type(“Hash”,“RSA”) Integer ccnum,” hash and RSA encryp-
tion are supported for the credit card number, which is a
particular attribute of the class of credit card (e.g., the object).
Thus, the annotations of the present invention allow for selec-
tive encryption of particular attributes of an object, so that the
entire object need not be encrypted, which would, for
example, require more overhead resources.

When the caching engine 30 puts an item in cache, the
caching engine 30 checks the caching specification in the
annotation for how to cache an attribute (or an entire object).
As should be understood by one of skill in the art, a developer
can change the caching strategy in runtime because the cach-
ing engine 30 looks at the encryption methods supported for
each attribute when it pushes and pulls data from the cache.
When the caching mechanism is changed (e.g., from hash to
RSA), the cache should discard all objects that the encryption
has been changed for. In effect, the function is overloaded by
placing special business logic for caching. Since encrypting
creates overhead, as described above, instead of encrypting
an entire object, with the present invention, annotations allow
the developer to determine what attributes of the object
(which, in embodiments, may be all of the attributes or the
entire object) need the ability to be encrypted.

Flow Diagrams

FIGS. 4-6 show exemplary flows for performing aspects of
the present invention. The steps of FIGS. 4-6 may be imple-
mented in the environment of FIG. 1, for example. The flow
diagrams may equally represent high-level block diagrams of
the invention. The flowcharts and/or block diagram in FIGS.
4-6 illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowcharts
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the figure. For example, two blocks shown
in succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. Each block
of each flowchart, and combinations of the flowchart illustra-
tions can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or com-
binations of special purpose hardware and computer instruc-
tions and/or software, as described above. Moreover, the steps
of'the flow diagrams may be implemented and executed from
either a server, in a client server relationship, or they may run
on a user workstation with operative information conveyed to
the user workstation. In an embodiment, the software ele-
ments include firmware, resident software, microcode, etc.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution

10

15

20

25

30

35

40

45

50

55

60

65

10

system. The software and/or computer program product can
be implemented in the environment of FIG. 1. For the pur-
poses of this description, a computer-usable or computer
readable medium can be any apparatus that can contain, store,
communicate, propagate, or transport the program for use by
or in connection with the instruction execution system, appa-
ratus, or device. The medium can be an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system
(or apparatus or device) or a propagation medium. Examples
of a computer-readable storage medium include a semicon-
ductor or solid state memory, magnetic tape, a removable
computer diskette, a random access memory (RAM), a read-
only memory (ROM), a rigid magnetic disk and an optical
disk. Current examples of optical disks include compact disk-
read only memory (CD-ROM), compact disc-read/write
(CD-R/W) and DVD.

FIG. 4 shows an exemplary process flow 400 for caching in
accordance with aspects of the invention. More specifically,
the exemplary process flow 400 involves communications
between an application server 315 and the caching engine 30
as indicated by the horizontal line. As shown in F1G. 4, at step
405, an application server determines an object requires cach-
ing. At step 410, the application server sends the object to the
caching engine. At step 415, the caching engine receives the
object. At step 420, the caching engine determines whether
encryption for the object is turned on. If, at step 420, the
caching engine determines that encryption for the object is
not turned on, then, at step 430, the caching engine serializes
and caches the object. If, at step 420, the caching engine
determines that encryption for the object is turned on, then, at
step 425, the caching engine checks the annotation of the
object.

At step 435, the caching engine determines whether
attributes of the object (or the entire object) indicate required
encryption. If, at step 435, the caching engine determines that
attributes of the object (or the entire object) do not indicate
any required encryption, then, at step 440, the caching engine
serializes and caches the object. If, at step 435, the caching
engine determines that attributes of the object (or the entire
object) do indicate required encryption, then, at step 445, the
caching engine encrypts those attributes that are annotated (or
encrypts the entire object if indicated by the annotation). At
step 450, the caching engine serializes and caches the object.

FIG. 5 shows an exemplary process flow 500 for a hash
cache retrieval in accordance with aspects of the invention.
More specifically, the exemplary process flow 500 involves
communications between the application server 315 and the
caching engine 30 as indicated by the horizontal line. At step
505, an application requests an object from a cache. At step
510, a caching server (e.g., the computing infrastructure 12 or
server of FIG. 1) receives the request. At step 515, the caching
engine checks the annotation for the object. At step 520, the
caching engine determines if the object is annotated or if
attributes of the object are annotated indicating some encryp-
tion of the object or attributes of the object.

If, at step 520, the caching engine determines that the
object is not annotated and attributes of the object are not
annotated, then, at step 522, the caching engine returns the
cached object, and at step 525, the application receives the
object from the cache. If, at step 520, the caching engine
determines that either the object is annotated or attributes of
the object are annotated, then, at step 530, the caching engine
decrypts the object or the attributes. At step 535, the caching
engine returns the cached object. At step 540, the application
receives the object from the cache.

FIG. 6 shows an exemplary process flow 600 for an RSA/
key-based cache retrieval in accordance with aspects of the

US 9,087,211 B2

11

invention. More specifically, the exemplary process tlow 600
involves communications between the application server 315
and the caching engine 30 as indicated by the horizontal line.
Atstep 605, an application requests an object from a cache. At
step 610, the caching server (e.g., the computing infrastruc-
ture 12 or server of FIG. 1) receives the request. At step 615,
the caching engine checks the annotation for the object. At
step 620, the caching engine returns the cached object. At step
625, the application server receives the object from the cache.

Atstep 635, a decryption component 630 of the application
server determines whether a key-based encryption is enabled.
If, at step 635, the decryption component determines that the
key-based encryption is not enabled, at step 645, the decryp-
tion component returns the object to the requestor. If, at step
635, the decryption component determines that the key-based
encryption is enabled, at step 640, the decryption component
decrypts the object (or attributes) with a public key. At step
650, the decryption component returns the object to the
requestor.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims,
if applicable, are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principals of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particularuse contemplated. Accordingly, while the invention
has been described in terms of embodiments, those of skill in
the art will recognize that the invention can be practiced with
modifications and in the spirit and scope of the appended
claims.

What is claimed is:
1. A method implemented in a computer infrastructure and
comprising:

receiving an object requiring caching from an application
server;

detecting that an object encryption is activated for the
object;

inspecting an annotation for an attribute of the object,
which indicates a type of encryption supported for the
attribute;

determining that the attribute of the object requires encryp-
tion using a first type of encryption based on the inspect-
ing;

encrypting the attribute of the object that requires encryp-
tion using the first type of encryption;

10

15

20

25

30

35

40

45

50

60

65

12

serializing and caching the object and the attribute
encrypted with the first type of encryption in a cache
storage;

changing the first type of encryption to a second type of

encryption as indicated by the annotation;

discarding the object and the attribute encrypted with the

first type of encryption from the cache storage upon
changing the first type of encryption to the second type
of encryption;
encrypting the attribute of the object that requires encryp-
tion using the second type of encryption; and

serializing and caching the object and the attribute
encrypted with the second type of encryption in the
cache storage,

wherein the computer infrastructure comprises a comput-

ing device including a caching engine that performs at
least the receiving, the detecting, the inspecting, the
determining, the encrypting, and the serializing and
caching.

2. The method of claim 1, wherein when determining that
the object encryption is not activated for the object based on
the detecting, the serializing and caching the object is per-
formed without encryption of the object.

3. The method of claim 1, wherein when determining that
the attribute of the object does not require encryption based
on the inspecting, the serializing and caching the object and
the attribute is performed without encryption of the object.

4. The method of claim 1, further comprising:

the caching engine receiving a request from a server for the

object from the cache storage;

the caching engine determining that the annotation for the

attribute of the object indicates that the attribute of the
object is encrypted using the type of encryption sup-
ported for the attribute;

the caching engine decrypting the attribute of the object

which is encrypted; and

the caching engine sending the object to the server.

5. The method of claim 4, wherein the server is one of the
application server and another application server.

6. The method of claim 1, further comprising

the caching engine receiving a request from a server for the

object from the cache storage;

the caching engine determining that the annotation for the

attribute of the object indicates that the attribute of the
object is encrypted using the type of encryption sup-
ported for the attribute;

the caching engine sending the object and the attribute to

the server, wherein the server is operable to one of:

return the object and the attribute to a requestor when a
key-based encryption is not enabled; and

return the attribute of the object and the object to the
requester after decrypting the attribute of the object
using a public key when the key-based encryption is
enabled.

7. The method of claim 6, wherein the server is one of the
application server and another application server.

8. The method of claim 1, wherein the first type of encryp-
tion comprises one of a hash encryption and an RSA encryp-
tion and the second type of encryption comprises one of the
RSA encryption and the hash encryption, respectively.

9. The method of claim 1, wherein the annotation is a
runtime annotation.

10. The method of claim 1, wherein the annotation indi-
cates at least two encryption types supported for the attribute
of the object.

11. The method of claim 1, wherein the inspecting occurs
upon pushing or pulling data from the cache storage.

US 9,087,211 B2

13

12. The method of claim 1, further comprising discarding
the object from the cache storage when an encryption type of
the object is changed.

13. The method of claim 1, wherein the first type of encryp-
tion comprises at least one of a hash encryption and an RSA
encryption.

14. The method of claim 1, wherein a service provider at
least one of creates, maintains, deploys and supports the
computer infrastructure.

15. The method of claim 1, wherein steps are provided by
a service provider on a subscription, advertising, and/or fee
basis.

16. A system, comprising:

a hardware computing device including a caching engine

operable to:

receive an object requiring caching from an application

server;
detect that an object encryption is activated for the object;
inspect an annotation for an attribute of the object, which
indicates a type of encryption supported for the attribute;

determine whether the attribute of the object requires
encryption using a first type of encryption based on the
inspecting;

encrypt the attribute of the object that requires encryption

using the first type of encryption;

serialize and cache the object and the attribute encrypted

with the first type of encryption in a cache storage;
change the first type of encryption to a second type of
encryption as indicated by the annotation;

discard the object and the attribute encrypted with the first

type of encryption from the cache storage upon chang-
ing the first type of encryption to the second type of
encryption;

encrypt the attribute of the object that requires encryption

using the second type of encryption; and

serialize and cache the object and the attribute encrypted

with the second type of encryption in the cache storage.

17. The system of claim 16, wherein the caching engine is
further operable to:

receive arequest from a server for the object from the cache

storage;

determine that the annotation for the attribute of the object

indicates that the attribute of the object is encrypted

using the type of encryption supported for the attribute;
decrypt the attribute of the object which is encrypted; and
send the object to the server.

18. The system of claim 17, wherein the server is one of the
application server and another application server.

19. The system of claim 16, wherein the caching engine is
further operable to:

receive arequest from a server for the object from the cache

storage;

determine that the annotation for the attribute of the object

indicates that the attribute of the object is encrypted
using the type of encryption supported for the attribute;
and

send the object and the attribute to the server, such that the

server is operable to one of:

return the object and the attribute to a requester when a
key-based encryption is not enabled; and

return the attribute of the object and the object to the
requestor after decrypting the attribute of the object
using a public key when the key-based encryption is
enabled.

20. The system of claim 19, wherein the server is one of the
application server and another application server.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

21. A computer program product comprising a computer
readable hardware storage device having readable program
code stored on the computer readable storage device, the
program code comprising:

program code to receive an object requiring caching from

an application server;

program code to detect whether object encryption is acti-

vated for the object;

program code to inspect an annotation for an attribute of

the object, which indicates a type of encryption sup-
ported for the attribute, when the object encryption is
activated for the object;

program code to determine whether the attribute of the

object requires encryption using a first type of encryp-
tion based on the inspecting;

program code to encrypt the attribute of the object that

requires encryption using the first type of encryption;
program code to serialize and cache the object and the
attribute encrypted with the first type of encryption;

program code to change the first type of encryption to a

second type of encryption as indicated by the annota-
tion;

program code to discard the object and the attribute

encrypted with the first type of encryption upon chang-
ing the first type of encryption to the second type of
encryption;
program code to encrypt the attribute of the object that
requires encryption using the second type of encryption;

program code to serialize and cache the object and the
attribute encrypted with the second type of encryption;
and

program code to perform at least the receiving, the detect-

ing, the inspecting, the determining, the encrypting, and
the serializing and caching,

wherein the annotation is a runtime annotation, and

wherein the annotation indicates at least two encryption

types supported for the attribute of the object.

22. A method comprising:

providing a computer infrastructure operable to:

receive an object from an application server;

detect whether object encryption is activated for the
object;

inspect an annotation for an attribute of the object, which
indicates a type of encryption supported for the
attribute, when the object encryption is activated for
the object;

determine whether the attribute of the object requires
encryption using a first type of encryption based on
the inspecting;

encrypt the attribute of the object that requires encryp-
tion using the first type of encryption;

serialize and cache the object and the attribute encrypted
with the first type of encryption;

change the first type of encryption to a second type of
encryption as indicated by the annotation;

discard the object and the attribute encrypted with the
first type of encryption upon changing the first type of
encryption to the second type of encryption;

encrypt the attribute of the object that requires encryp-
tion using the second type of encryption; and

serialize and cache the object and the attribute encrypted
with the second type of encryption,

wherein when determining that the object encryption is not

activated for the object based on the detecting, the seri-
alizing and caching the object is performed without
encryption of the object, and

US 9,087,211 B2
15 16

wherein when determining that the attribute of the object
does not require encryption based on the inspecting, the
serializing and caching the object and the attribute is
performed without encryption of the object.

#* #* #* #* #*

